Université Paris-Est Université Paris-Est - Marne-la-Vallée Université Paris-Est - Créteil Val-de-Marne Centre National de la Recherche Scientifique

IHP

Institut Henri Poincaré

Distorsion géodésique du volume et courbure de Ricci en géométrie sous-riemannienne

Site: 
Date: 
13/06/2016 - 14:00 - 15:00
Salle: 
421
Orateur: 
BARILARI Davide
Localisation: 
Université Paris 7
Localisation: 
France
Résumé: 

On généralise le développement classique du volume riemannien le long du flot géodésique en terme de la courbure de Ricci au cas sous-riemannien (et plus généralement le long d'une classe de flots Hamiltoniens quadratiques). On introduit un nouvel invariant qui définit l'interaction entre la forme volume et la dynamique, et on montre comment cet invariant, et aussi des invariants de type courbure associés à la dynamique, apparaissent dans le développement asymptotique. Si le temps le permet, on discutera aussi des applications possibles de ce résultat.

Construction d'anneaux minimaux dans $\widetilde{PSL}_2(\mathbb{R},\tau)$ via la méthode variationnelle

Site: 
Date: 
30/05/2016 - 14:00 - 15:00
Salle: 
421
Orateur: 
NGUYEN Minh-Hoang
Localisation: 
Université Toulouse 3
Localisation: 
France
Résumé: 

Nous construisons des anneaux minimaux complets plongés dans $\widetilde{PSL}_2(\mathbb{R},\tau)$ qui sont asymptotiques à deux surfaces minimales verticales. Ces anneaux sont construits en prenant la limite d'une suite d'anneaux minimaux compacts. L'ingrédient principal de cette démonstration est l'estimé de la courbure des suites d'anneaux minimaux compacts, basé sur le contrôle de l'espace tangent en utilisant les feuilletages minimaux de $\widetilde{PSL}_2(\mathbb{R},\tau)$.

Variational aspects of Liouville equations

Type: 
Site: 
Date: 
02/06/2016 - 10:00 - 12:00
Salle: 
201
Orateur: 
MALCHIODI Andrea
Localisation: 
SISSA Trieste
Localisation: 
Italie
Résumé: 

We consider a class of Liouville equations that arise in differential geometry when prescribing the Gaussian curvature of a surface and in models of mathematical physics describing stationary Euler flows and self-dual Chern-Simons equations. We discuss methods, variational in nature, to derive general existence results from suitable improvements of the Moser-Trudinger inequality combined with Morse-theoretical methods. We will treat in particular the case with Dirac masses representing, in the above motivations, conical singularities or vortex points.

Variational aspects of Liouville equations

Type: 
Site: 
Date: 
01/06/2016 - 10:00 - 12:00
Salle: 
314
Orateur: 
MALCHIODI Andrea
Localisation: 
SISSA Trieste
Localisation: 
Italie
Résumé: 

We consider a class of Liouville equations that arise in differential geometry when prescribing the Gaussian curvature of a surface and in models of mathematical physics describing stationary Euler flows and self-dual Chern-Simons equations. We discuss methods, variational in nature, to derive general existence results from suitable improvements of the Moser-Trudinger inequality combined with Morse-theoretical methods. We will treat in particular the case with Dirac masses representing, in the above motivations, conical singularities or vortex points.

Entropie diabolique

Type: 
Type: 
Site: 
Date: 
17/06/2016 - 10:30
Salle: 
05
Orateur: 
MIHALACHE Nicolae
Résumé: 

C'est bien connu que l'entropie de la famille quadratique réelle est continue (Misiurewicz-Szlenk), monotone (Milnor-Thurston, Douady-Hubbard-Sulivan) et localement constante sur un ouvert dense de paramètres hyperboliques (Graczyk-Swiatek, Lyubich). L'ensemble de paramètres non-hyperboliques est de mesure positive (Jakobson, Benedicks-Carleson). Guckenheimer a montré que l'entropie est uniformément Hölder continue.

Nous (Dobbs-Mihalache) trouvons la valeur de l'exposant de Hölder de l'entropie $h$ en presque tout paramètre $a$. On a $$\mathrm{Höl}(h, a)=\frac{h(a)}{\lambda(a)},$$
où $\lambda(a)$ est l'exposant de Lyapunov de l'orbite critique (bien défini d'après Avila-Moreira).

En utilisant des résultats récents (Dobbs-Todd) sur la dépendance du paramètre des mesures invariantes, nous montrons que pour presque tout paramètre $a$, $$h'(a)=0.$$
En dehors d'un voisinage arbitraire de $-2$ (pointe de l'ensemble de Mandelbrot), presque tout paramètre est envoyé par $h$ dans un ensemble de dimension de Hausdorff strictement inférieure à $1$. En dehors d'un voisinage arbitraire de $\log 2 = h(-2)$, presque toute valeur de l'entropie provient d'un ensemble de paramètres de dimension de Hausdorff strictement inférieure à $1$.

Remarks on a quantitative equidistribution in the parameter space of complex dynamics (after Gauthier--Vigny)

Type: 
Type: 
Site: 
Date: 
27/05/2016 - 10:30
Salle: 
05
Orateur: 
OKUYAMA Yusuke
Localisation: 
Université des arts et techniques de Kyoto
Localisation: 
Japon
Résumé: 

In the study of complex dynamics, the so called equidistribution phenomena (of pullback of points, preperiodic points, and so on) towards the canonical measure supported on the chaotic part of dynamics have played a fundamental role in the recent development. Such equidistribution phenomena also occur in the parameter space of holomorphic family of rational functions, and have been studied by many researchers including Levin, Favre--Rivera-Letelier, Dujardin--Favre, Buff--Gauthier, and Gauthier--Vigny.

In a spirit of the Nevanlinna theory, it seems interesting to study how those equidistribution phenomena would be quantified. In this talk, we will survey a history of quantitative equidistribution in complex dynamics including a recent remarkable Gauthier--Vigny's in the parameter space of polynomial families, and will give a precision of their result in the specific (monic and centered) unicritical polynomials family.

A new complexity function of repetition and irrationality exponents

Type: 
Type: 
Site: 
Date: 
20/05/2016 - 10:30
Salle: 
05
Orateur: 
Dong Han Kim
Localisation: 
Dongguk University
Localisation: 
Corée du sud
Résumé: 

We introduce and study a new complexity function in combinatorics on words, which takes into account the smallest return time of a factor of an infinite word. We characterize the eventually periodic words and the Sturmian words by means of this function. Then, we establish a new result on repetitions in Sturmian words and show that it is best possible.

We deduce a lower bound for the irrationality exponent of real numbers whose sequence of b-ary digits is a Sturmian sequence over $\{0,1,…,b−1\}$ and we prove that this lower bound is best possible. If the irrationality exponent of $\xi$ is equal to $2$ or slightly greater than $2$, then the $b$-ary expansion of $\xi$ cannot be `too simple', in a suitable sense. Our result applies, among other classical numbers, to badly approximable numbers, non-zero rational powers of $e$, and $\log(1+1/a)$, provided that the integer $a$ is sufficiently large. It establishes an unexpected connection between the irrationality exponent of a real number and its $b$-ary expansion.

This is joint work with Yann Bugeaud.

Flot de Ricci de $3$-variétés non-compactes, à courbure non-bornée, et applications à l'étude de certains espaces métriques singuliers

Site: 
Date: 
02/05/2016 - 14:00 - 15:00
Salle: 
201
Orateur: 
HOCHARD Raphaël
Localisation: 
Université Bordeaux 1
Localisation: 
France
Résumé: 

Dans une première partie, je décrirai les résultat de Miles Simon concernant le temps d'existence et les propriétés de régularisation du flot de Ricci quand la donnée initiale appartient à une famille de $3$-variétés compactes, pour lesquelles le volume des boules de taille 1 et la courbure de Ricci sont uniformément minorées. Je montrerai comment ces résultats s'appliquent à l'étude des espaces métriques obtenus comme limites d'éléments d'une telle famille.
Dans une seconde partie, j'expliquerai les difficultés qui apparaissent quand on s'intéresse à des variétés non-compactes, éventuellement non-complètes, et j'introduirai une notion de flot de Ricci d'une variété non-complète adaptée au problème.

Irreducibility of periodic curves

Type: 
Type: 
Site: 
Date: 
08/04/2016 - 10:30
Salle: 
05
Orateur: 
Jan Kiwi
Localisation: 
Université pontificale catholique
Localisation: 
Chili
Résumé: 

In the moduli space of critically marked cubic polynomial, given a positive integer $n$, let $\operatorname{Per}_n(0)$ denote the set corresponding to polynomials having one periodic critical point of period $n$. We show that $\operatorname{Per}_n(0)$ is an irreducible algebraic curve provided that $n$ is prime. This is a joint work with Matthieu Arfeux.

Catenoid estimate and its geometric applications

Site: 
Date: 
04/04/2016 - 14:00 - 15:00
Salle: 
201
Orateur: 
KETOVER Dan
Localisation: 
Imperial college
Localisation: 
Royaume-Uni
Résumé: 

The min-max theory developed in the 80s by Almgren-Pitts allows one to run Morse theory with the area functional on the space of hypersurfaces in a manifold to construct minimal surfaces in great generality. The challenge is to understand the geometry of the minimal surfaces produced this way. I will describe joint work with F.C. Marques and A. Neves where we use a sharp area estimate for catenoids to control the geometry in several settings.

Syndiquer le contenu