Université Paris-Est Université Paris-Est - Marne-la-Vallée Université Paris-Est - Créteil Val-de-Marne Centre National de la Recherche Scientifique

IHP

Institut Henri Poincaré

Spectrum problem of the inner whole plane SLE with drift

Type: 
Type: 
Site: 
Date: 
29/01/2016 - 10:30 - 12:00
Salle: 
421
Orateur: 
Yong HAN
Localisation: 
Université d'Orléans
Localisation: 
France
Localisation: 
France
Résumé: 

The inner whole plane SLE with a drift term can be regarded as a random perturbation of the logarithmic spiral. In this talk, we will discuss about the generalized spectrum of the logarithmic spiral and its random perturbation.

Nonconvex constant mean curvature surfaces in generic Riemannian $3$-manifolds

Site: 
Date: 
25/01/2016 - 14:00 - 15:00
Salle: 
421
Orateur: 
ZOLOTAREVA Tatiana
Localisation: 
École polytechnique
Localisation: 
France
Résumé: 

In Euclidean $3$-space, Hopf's Theorem asserts that round spheres are the only topological spheres whose mean curvature is constant. In 1990, R. Ye proved the existence of embedded constant mean curvature hypersurfaces in Riemannian manifolds obtained by perturbing geodesic spheres centered near nondegenerate critical points of the scalar curvature function. In our result we prove the existence in ''generic" Riemannian $3$-manifolds of topological spheres that have large constant mean curvature but are not convex. These surfaces are obtained by perturbing the connected sums of two tangent geodesic spheres of small radii whose centers are lined up along a geodesic which passes through a critical point of the scalar curvature function with velocity equal to a unit eigenvector associated to a simple non-zero eigenvalue of the Hessian of the scalar curvature.

Rigidity results and topology at infinity of translating solitons of the mean curvature flow

Site: 
Date: 
11/01/2016 - 14:00 - 15:00
Salle: 
421
Orateur: 
IMPERA Debora
Localisation: 
Université de Milan-Bicocca
Localisation: 
Italie
Résumé: 

In this talk I will discuss some rigidity results and obstructions on the topology at infinity of translating solitons of the mean curvature flow in the Euclidean space. These results were recently obtained in collaboration with M. Rimoldi and our approach relies on the theory of $f$-minimal hypersurfaces.

Calcul différentiel et formalisme thermodynamique

Type: 
Type: 
Site: 
Date: 
08/01/2016 - 15:30 - 17:00
Salle: 
05
Orateur: 
KLOECKNER Benoit
Résumé: 

(travail en commun avec Paolo Giulietti, Artur O. Lopes et Diego Marcon Farias)
Cet exposé présente une relecture de certains pans du formalisme thermodynamique à
l'aide d'idées géométriques et différentielles.

Certaines applications, par exemple dilatantes, peuvent voir beaucoup de leur propriétés
ergodiques décrites par l'étude de leurs « opérateurs de transfert » dépendant
de potentiels bien choisis ; en particulier on peut construire de nombreuses mesures
invariantes, décrire leur vitesse de mélange, trouver la mesure maximisant une combinaison
de l'entropie et de l'intégrale d'une fonction, etc.

Nous donnerons des démonstrations assez simples de résultats classiques dans un cadre assez
général, et préciserons un résultat d'optimisation sous contrainte dû à Kucherenko et Wolf
en partant de l'idée simple suivante : dans l'espace des potentiels, les potentiels normalisés
forment une sous-variété analytique, dont on peut exprimer simplement l'espace tangent et
qui s'identifie naturellement à un espace quotient. Cette observation permet par exemple de ramener des questions de régularité à une simple application du théorème d'inversion locale.

Marches aléatoires dans le plan en milieu stratifié

Type: 
Type: 
Site: 
Date: 
18/12/2015 - 10:30 - 12:00
Salle: 
05
Orateur: 
BRÉMONT Julien
Localisation: 
Université Paris-Est - Créteil
Localisation: 
France
Résumé: 

On s’intéresse à un modèle de chaîne de Markov dans le plan lorsque les lois de transition sont stratifiées horizontalement. Un cas particulier est un modèle dans le plan avec droites horizontales orientées, introduit par Campanino et Petritis en 2003. Nous donnons un critère de récurrence général. Des cas particuliers sont ensuite développés, par exemple lorsque l’environnement est produit par un système dynamique. Un théorème général est ensuite présenté. Des liens avec des modèles difficiles en milieu aléatoire seront ensuite évoqués.

Inégalités systoliques optimales sur le ruban de Möbius

Site: 
Date: 
30/11/2015 - 14:00 - 15:00
Salle: 
421
Orateur: 
YASSINE Zeina
Résumé: 

We prove optimal systolic inequalities on Finsler Mobius bands relating the systole and the height of the Mobius band to its Holmes-Thompson volume. We also establish an optimal systolic inequality for Finsler Klein bottles of revolution, and describe extremal metric families both on the Mobius band and the Klein bottle.

Joint work with: Stéphane sabourau

La conjecture de Mordell--Lang dynamique pour les applications polynomiales sur le plan affine

Type: 
Type: 
Site: 
Date: 
27/11/2015 - 10:30 - 12:00
Salle: 
421
Orateur: 
XIE Junyi
Localisation: 
Université Toulouse 3
Localisation: 
France
Résumé: 

Dans cet exposé, je vais parler parler de la preuve de la Conjecture de Mordell—Lang dynamique pour les endomorphismes polynomiaux du plan affine. Soit $f$ un endomorphisme polynomial du plan affine complexe et soit $C$ une courbe du plan. Soit $p$ un point quelconque dans le plan. Alors l'ensemble des nombres naturels $n$ tel que $f^n (p)$ est contenu dans $C$ est une union finie de progressions arithmétiques.

Le problème de Manin-Mumford pour les automorphismes polynomiaux de $\mathbb{C}^2$

Type: 
Type: 
Site: 
Date: 
20/11/2015 - 10:30 - 12:00
Salle: 
421
Orateur: 
DUJARDIN Romain
Résumé: 

le problème de Manin Mumford vise à comprendre les conditions sous lesquelles un système dynamique algébrique peut avoir un nombre “anormalement élevé” de points (pre)périodiques sur une sous variété. C’est un analogue dynamique d’un problème classique de théorie des nombres. Dans cet exposé je discuterai ce problème pour les automorphismes de $\mathbb{C}^2$. Il s’agit d’un travail en collaboration avec Charles Favre.

Volumes of minimal hypersurfaces and a new systolic inequality

Site: 
Date: 
02/11/2015 - 14:30 - 15:30
Salle: 
314
Orateur: 
LIOKUMOVITCH Yevgeny
Localisation: 
Imperial college
Localisation: 
Royaume-Uni
Résumé: 

We will prove an upper bound for the volume of a minimal hypersurface in a closed Riemannian manifold conformally equivalent to a manifold with $\mathrm{Ric}>-(n-1)$. In the second part of the talk we will construct a sweepout of a closed 3-manifold with positive Ricci curvature by $1$-cycles of controlled length and prove a systolic inequality for such manifolds.

These are joint works with Parker Glynn-Adey (Toronto) and Xin Zhou (MIT)

Equidistribution des paramètres post-critiquement fini hyperboliques

Type: 
Type: 
Site: 
Date: 
09/10/2015 - 10:30 - 12:00
Salle: 
421
Orateur: 
VIGNY Gabriel
Localisation: 
Université d'Amiens
Localisation: 
France
Résumé: 

Dans l'espace des polynômes à coefficients complexes de degrés $d$, il existe une mesure de bifurcation $\mu_{bif}$ qui mesure l'endroit où la dynamique est la moins stable. Je montrerai l'équidistribution, à vitesse exponentielle des paramètres pour lequels tous les points critiques sont périodiques vers $\mu_{bif}$ quand les périodes tendent vers l'infini. L'exposé commencera par un rappel historique du domaine. (En collaboration avec Thomas Gauthier).

Syndiquer le contenu