Université Paris-Est Université Paris-Est - Marne-la-Vallée Université Paris-Est - Créteil Val-de-Marne Centre National de la Recherche Scientifique

UPEC

Dimension de Hausdorff dans les systèmes dynamiques non-uniformément hyperboliques

Type: 
Type: 
Site: 
En cours depuis: 
01/10/2017
Orateur: 
WU Wanlou
Directeur(s): 
LIAO Lingmin

$\beta$-développements et leurs propriétés fractales

Type: 
Type: 
Site: 
En cours depuis: 
01/10/2017
Orateur: 
ZHENG Lixuan
Directeur(s): 
LIAO Lingmin

WU Wanlou

Situation: 
Non permanent
Nom: 
WU
Prénom: 
Wanlou
Site: 
Site: 
Statut: 
Équipe de recherche: 
Analyse harmonique et multifractale
Téléphone: 
01 45 17 10 88

ZHENG Lixuan

Situation: 
Non permanent
Nom: 
ZHENG
Prénom: 
Lixuan
Site: 
Site: 
Statut: 
Équipe de recherche: 
Analyse harmonique et multifractale
Téléphone: 
01 45 17 10 88

CRIN-BARAT Timothée

Situation: 
Non permanent
Nom: 
CRIN-BARAT
Prénom: 
Timothée
Site: 
Site: 
Statut: 
Équipe de recherche: 
Équations aux dérivées partielles
Courriel: 
timothee [dot] crin-barat [at] univ-paris-est [dot] fr
Téléphone: 
01 45 17 10 88

Graphes de Barak-Erdös et le modèle infini d'urnes

Site: 
Date: 
13/11/2017 - 11:15 - 12:15
Salle: 
P2 131
Orateur: 
RAMASSAMY Sanjay
Localisation: 
ENS Lyon
Localisation: 
France
Résumé: 

Les graphes de Barak-Erdös sont une variante orientée et acyclique des
graphes d'Erdös-Rényi : l'ensemble des sommets est {1,...,n} et pour toute
paire i < j, avec probabilité p on ajoute une arête orientée de i vers j,
indépendamment pour chaque paire i < j. La longueur du plus long chemin dans
les graphes de Barak-Erdös croît linéairement avec le nombre de sommets et
le taux de croissance C(p) est une fonction de la probabilité p de
présence d'une arête.

Foss et Konstantopoulos ont introduit un couplage entre les graphes de
Barak-Erdös et un cas particulier d'un système de particules en
interaction appelé "modèle infini d'urnes". En utilisant ce couplage, nous
prouvons certaines propriétés de C(p) : analyticité pour p proche de 1,
existence d'une dérivée première et absence de dérivée seconde en p=0
(travail en commun avec Bastien Mallein).

Si le temps le permet, j'aborderai des propriétés du modèle infini d'urnes
dans le cas général, telles que le gel et l'existence de transitions de
phases (collaboration avec Ksenia Chernysh et Bastien Mallein).

Outils analytiques et dynamiques avec singularités (y compris flots billards de Sinai)

Type: 
Type: 
Site: 
En cours depuis: 
26/10/2017
Date: 
26/10/2017 - 13:45 - 14:45
Salle: 
P1 021
Orateur: 
BALADI Viviane
Localisation: 
Université Paris 6
Localisation: 
France
Résumé: 

Depuis une quinzaine d'années, des outils venant de l'analyse, en particulier de nouveaux espaces de Banach de distributions anisotropes, ont permis des progrès substantiels en théorie ergodique.

Après avoir brièvement expliqué comment un trou spectral d'un opérateur de transfert fournit des informations ergodiques, nous nous concentrerons sur les billards de Sinai. Ces systèmes naturels sont uniformément hyperboliques et conservent le volume, mais les orbites rasantes donnent lieu à des singularités. De nouveaux outils analytiques nous ont récemment permis d'obtenir (avec M. Demers et C. Liverani) le mélange exponentiel pour les flots billards de Sinai à horizon fini et le volume naturel. Nous terminerons par un travail en cours (avec M. Demers) sur d'autres états de Gibbs (y compris la mesure maximisant l'entropie).

Approximations de surfaces et énergies géométriques

Type: 
Type: 
Site: 
En cours depuis: 
28/09/2017
Date: 
28/09/2017 - 13:45 - 14:45
Salle: 
P1-005
Orateur: 
MASNOU Simon
Localisation: 
Université Lyon 1
Localisation: 
France
Résumé: 

Les problématiques d'interfaces sont omniprésentes en physique, en biologie, en mécanique, en traitement d'image ou encore en infographie. Il y a, en fonction du contexte et de l'application visée, beaucoup de façons de représenter une surface.

L'exposé portera sur deux modèles de représentation de surfaces qui permettent de bien estimer des énergies d'ordre un (aire, périmètre) ou d'ordre deux (impliquant les courbures) : a) un modèle explicite, où la surface est représentée comme une mesure (plus précisément un varifold), ce qui permet de décrire des surfaces continues (régulières, singulières ou diffuses) aussi bien que des surfaces discrètes (maillage, nuage de points). b) un modèle implicite, appelé champ de phase, qui repose sur une représentation implicite d'une interface continue compatible avec une approximation régulière d'énergies d'ordre un ou deux.

On présentera dans l'exposé les propriétés de ces deux modèles et leur capacité à encoder des informations géométriques. Plusieurs applications numériques seront évoquées : l'estimation de courbures pour des nuages de points ou des maillages, la reconstruction de volumes à partir de coupes 2D, le flot de courbure moyenne ou le flot de Willmore dans des contextes variés (binaire/multiphase, isotrope/anisotrope, libre/confiné).

CHEN Haibo

Date: 
Sam, 23/09/2017 - Sam, 22/09/2018
Site: 
Nom: 
CHEN
Prénom: 
Haibo
Origine: 
Université d'économie et de droit de Zhongnan
Origine: 
République populaire de Chine
Thème: 
Systèmes dynamiques
Invitant: 
LIAO Lingmin

YAO Jiayan

Date: 
Mer, 26/07/2017 - Jeu, 24/08/2017
Site: 
Nom: 
YAO
Prénom: 
Jiayan
Origine: 
Université Tsinghua
Origine: 
République populaire de Chine
Thème: 
Systèmes dynamiques
Invitant: 
LIAO Lingmin
Syndiquer le contenu